ON SOME FUNCTIONALS, II*

BY S. SAKS

- 1. This article is primarily intended to correct the mistakes in §§4 and 5 of the former paper by the author On some functionals.† On the whole these errors do not affect the theorems themselves with the exception of the obviously false remarks that Theorem 4 and a part of Theorem 3 of S. F. hold for the space R of characteristic functions. In the present note we complete the gaps in the proofs of those theorems‡ and slightly strengthen Theorem 3 of S. F. in the part concerning the equal continuity of the operations considered (cf. below Theorem 3, (ii)). We also prove two theorems which were not stated in S. F., namely, Theorems 1 and 4 so as to obtain a more symmetric set of results.
- 2. We shall recall briefly the notation. Let $\{\xi_n(t)\}$ be a sequence of measurable functions on a measurable set U. Then
- (i) $\{\xi_n(t)\}$ is bounded in measure on U if to every $\eta > 0$ there corresponds a number $M = M(\eta)$ such that

meas
$$E[t \in U; \mid \xi_n(t) \mid > M] < \eta$$
 $(n = 1, 2, \cdots);$

(ii) $\{\xi_n(t)\}$ converges in measure on U if to every η there corresponds a $k = k(\eta)$ such that

meas
$$E[t \in U; \mid \xi_n(t) - \xi_m(t) \mid > \eta] < \eta$$

whenever n > k, m > k;

(iii) $\{\xi_n(t)\}\$ has property $B(\epsilon)$ on U, if there exists a number M independent of n, such that

meas
$$E[t \in U; | \xi_n(t) | > M] < \epsilon$$
 $(n = 1, 2, \cdots);$

(iv) $\{\xi_n(t)\}\$ has property $C(\epsilon)$ on U, \S if to every $\eta > 0$ there corresponds a $k = k(\eta)$ such that

^{*} Presented to the Society, September 5, 1936; received by the editors April 27, 1936.

[†] These Transactions, vol. 35 (1932), pp. 549-556. This paper will be referred to as S. F.

[‡] For the proof of Parts (i) and (ii) of Theorem 3 of S. F. see also the recent book by Kaczmarz and Steinhaus, *Theorie der Orthogonalreihen*, Monografje Matematyczne, Warszawa-Lwow, 1935, pp. 24–26. The author's attention was called to these mistakes by Kaczmarz and by Gowurin. (Cf. Gowurin, *On sequences of indefinite integrals*, Bulletin of the American Mathematical Society, vol. 42 (1936), pp. 930–936.)

[§] We shall write $\{\xi_n(t)\}\epsilon B(\epsilon)$ or $\epsilon C(\epsilon)$ to indicate that the sequence $\{\xi_n(t)\}$ has property $B(\epsilon)$ or $C(\epsilon)$ respectively.

meas
$$E[t \in U; | \xi_n(t) - \xi_m(t) | > \eta] < \epsilon, \quad n > k, m > k.$$

In what follows we denote by I a measurable set of finite measure (e.g., an interval) and by E a Banach space. We shall consider sequences of functions $\{\xi_n(x,t)\}$ depending on $x \in E$ and $t \in I$. For each x fixed in E, $\xi_n(x,t)$ are finite and measurable functions of t in I. On the other hand, as functions of x, they are supposed to be linear operations on E; i.e., additive and continuous. This means that $\xi_n(x_1+x_2,t)=\xi_n(x_1,t)+\xi_n(x_2,t)$ almost everywhere on I, whenever $x_1 \in E$, $x_2 \in E$ and that $\xi_n(x,t)$ tends in measure to 0 on I when $|x| \to 0$ (for n fixed). In considering $\xi_n(x,t)$ as operations on E we shall often write $\xi_n(x,t) \equiv F_n(x)$.

The operations $F_n(x) = \xi_n(x, t)$ will be said to be equally continuous if to every $\eta > 0$ there corresponds an r > 0 such that

meas
$$E[t \in I; |\xi_n(x, t)| > \eta] < \eta$$
 $(n = 1, 2, \cdots),$

whenever |x| < r. They will be said to be equally continuous with respect to a set $U \subset I$ if the condition above is satisfied with I replaced by U.

Finally $\{T_k\}$ $(k=1, 2, \cdots)$ will denote a sequence of measurable sets in I such that the characteristic functions of the sets T_k form an everywhere dense set in the space of all characteristic functions defined on I. Thus for each set Q and every $\eta > 0$ there is a set T_k , $k = k(Q, \eta)$, such that meas $(Q - QT_k) < \eta$ and meas $(T_k - QT_k) < \eta$.

3. We have

LEMMA 1. Let $\sum_{1}^{\infty} \epsilon_{k}$ be a converging series of positive numbers, $\{P_{q}\}$ a sequence of measurable sets in I and

$$(3.1) P = \lim_{k \to \infty} \sup P_k = \prod_{k=1}^{\infty} \sum_{q=k}^{\infty} P_q.$$

Then, if a sequence $\{\xi_n(t)\}\in B(\epsilon_k)$ on P_k $(k=1, 2, \cdots)$, it is bounded in measure on P; and if a sequence $\{\xi_n(t)\}\in C(\epsilon_k)$ on P_k $(k=1, 2, \cdots)$, it converges in measure on P.

Let

$$Q_k = \sum_{q=k}^{\infty} P_q, \qquad Q_{k,s} = \sum_{q=k}^{s} P_q,$$

and let η be an arbitrary positive number. Choose k_0 and next s_0 , so that

$$(3.2) \qquad \sum_{i=k}^{\infty} \epsilon_i < \frac{\eta}{2}, \quad \text{meas } (Q_{k_0} - Q_{k_0,s_0}) < \frac{\eta}{2}.$$

Suppose now that the sequence under consideration $\varepsilon B(\varepsilon_k)$ on P_k . Then there is a number M such that

meas
$$E[t \in Q_{k_0,s_0}; |\xi_n(t)| > M] < \sum_{q=k_0}^{s_0} \epsilon_q < \frac{\eta}{2}$$
 $(n = 1, 2, \cdots);$

thus, by (3.1) and (3.2)

meas
$$E[t \epsilon P; |\xi_n(t)| > M] \le \max_t E[t \epsilon Q_{k_0}; |\xi_n(t)| > M] < \eta$$

$$(n = 1, 2, \cdots);$$

i.e., the sequence $\{\xi_n(t)\}$ is bounded in measure on P.

Next suppose that the sequence $\{\xi_n(t)\} \in C(\epsilon_k)$ on P_k . Then there is a positive integer n_0 such that

$$\operatorname{meas} E[t \in Q_{k_0,s_0}; | \xi_n(t) - \xi_m(t) | > \eta] < \sum_{i=k_0}^{s_0} \epsilon_i < \frac{\eta}{2}, \qquad n \geq n_0, \quad m \geq n_0,$$

and so, by (3.1) and (3.2)

meas
$$E[t \in P; \mid \xi_n(t) - \xi_m(t) \mid > \eta] \le \max_t E[t \in Q_{k_0}; \mid \xi_n(t) - \xi_m(t) \mid > \eta] < \eta,$$

$$n \ge n_0, \ m \ge n_0.$$

LEMMA 2. If a sequence $\{\xi_n(x,t)\}\in B(\epsilon)$ on a measurable set $P \subset I$ for every x belonging to a set H of the second category in E, then, to every $\eta > 0$, there corresponds an r > 0 such that for an arbitrary $x \in E$ with |x| < r,

(3.3) meas
$$E[t \in P; |\xi_n(x, t)| > \eta] < 3\epsilon$$
 $(n = 1, 2, \cdots).$

Let H_m denote the set of all $x \in H$ such that

meas
$$E[t \in P; |\xi_n(x, t)| > m] < \epsilon$$
 $(n = 1, 2, \cdots).$

We have $H = \sum_{1}^{\infty} H_{m}$, and so there is a positive integer m_{0} such that $H_{m_{0}}$ is of the second category. Since $\xi_{n}(x,t)$ is continuous in x on E, the inequalities

meas
$$E[t \in P; |\xi_n(x, t)| > m_0] \le \epsilon$$
 $(n = 1, 2, \cdots)$

hold for all $x \in \overline{H}_{m_0}$, and consequently for all x in a sphere $K_0 \subset \overline{H}_{m_0}$. Let r_0 be the radius of K_0 . By the linearity of the operations $\xi_n(x, t)$, we have

meas
$$E\left[t \epsilon P; \mid \xi_n(x, t) \mid > 2m_0\right] \leq 2\epsilon$$
 $(n = 1, 2, \cdots),$

whenever $|x| < r_0$, and therefore condition (3.3) is satisfied with $r = \eta r_0/(2m_0)$.

4. We now prove the following theorem:

THEOREM 1. For any given sequence $\{\xi_n(x,t)\}$ there exists a set A in I such that

(i) the sequence $\{\xi_n(x,t)\}$ is bounded in measure on A for all $x \in E$;

- (ii) the operations $F_n(x) = \xi_n(x, t)$ are equally continuous with respect to A;
- (iii) for every x in E, except perhaps for a set of the first category in E, the sequence $\{\xi_n(x,t)\}$ is bounded in measure on no set in I-A of positive measure.

Denote by α_0 the least upper bound of all numbers α with the property that there exists a set $H(\alpha)$ of the second category in E such that for each x in $H(\alpha)$ the sequence $\{\xi_n(x,t)\}$ is bounded in measure on a set of measure $>\alpha$. Let q be a positive integer. We shall prove first that there exists a set H_q of the second category in E and a set P_q in I of measure $>\alpha_0-1/q^2$ such that

$$\{\xi_n(x,t)\} \in B(1/q^2) \text{ on } P_q, \quad x \in H_q.$$

Indeed to every $x \in H(\alpha_0 - 1/q^2)$ we can attach a set T_k , k = k(x) (see §2), such that

$$\{\xi_n(x,t)\} \varepsilon B(1/q^2) \text{ on } T_k, \text{ meas } T_k > \alpha_0 - \frac{1}{q^2}.$$

Let $H_{q,k}$ denote the set of all $x \in H(\alpha_0 - 1/q^2)$ for which (4.2) is satisfied for a fixed k. Since $H(\alpha_0 - 1/q^2) = \sum_{k=1}^{\infty} H_{q,k}$ is of the second category, there exists a $k = k_q$ such that H_{q,k_q} is of the second category. On putting $H_q = H_{q,k_q}$ and $P_q = T_{k_q}$, we see at once that H_q and P_q satisfy condition (4.1).

We shall prove next that for every x in E

$$\{\xi_n(x,t)\} \in B(8/q^2) \text{ on } P_q.$$

To show this consider an arbitrary point $x_0 \in \overline{H}_q$. By (4.1) and Lemma 2

if $|x_0-x_1|$ is sufficiently small. Hence we can choose $x_1 \in H_q$ so as to satisfy (4.4). Since $\{\xi_n(x_1,t)\}\in B(1/q^2)$ on P_q this implies that $\{\xi_n(x_0,t)\}\in B(4/q^2)$ on P_q . But x_0 is an arbitrary element of the set \overline{H}_q which certainly contains interior points (a sphere), whence it follows that $\{\xi_n(x,t)\}\in B(8/q^2)$ on P_q for all x in E.

Now set $A = \prod_{k=1}^{\infty} \sum_{q=k}^{\infty} P_q$. It results from (4.3) and Lemma 1 that the sequence $\{\xi_n(x,t)\}$ is bounded in measure on A, i.e., that A satisfies condition (i) of the theorem.

Next let η be an arbitrary positive number, and let, as in the proof of Lemma 1,

(4.5)
$$Q_k = \sum_{q=k}^{\infty} P_q, \qquad Q_{k,s} = \sum_{q=k}^{s} P_q.$$

Let k_0 and s_0 be positive integers such that

$$(4.6) 24/(k_0-1) < \frac{\eta}{2}, \text{meas} (Q_{k_0}-Q_{k_0,s_0}) < \frac{\eta}{2}.$$

By (4.3), Lemma 2 and (4.6), there exists an $r=r(\eta)$ such that, for |x| < r,

meas
$$E[t \in Q_{k_0,s_0}; |\xi_n(x,t)| > \eta] < 24 \sum_{n=k}^{s_0} q^{-2} < \frac{\eta}{2}$$
 $(n = 1, 2, \dots),$

and thus, again by (4.6)

$$\operatorname{meas} E[\operatorname{te}A; \mid \xi_n(x,t) \mid > \eta] \leq \operatorname{meas} E[\operatorname{te}Q_{k_0}; \mid \xi_n(x,t) \mid > \eta] < \eta$$

which is condition (ii).

Finally, in order to prove condition (iii) suppose that there is a set H of the second category in E such that for every $x \in H$ the sequence $\{\xi_n(x, t)\}$ is bounded in measure on a set $Q(x) \subset I - A$ of positive measure. Then, for every $x \in H$ the sequence $\{\xi_n(x, t)\}$ would be bounded in measure on A + Q(x). Now since

meas
$$[A + Q(x)] > \text{meas } A \ge \lim_{q} \text{meas } P_q \ge \lim_{q} (\alpha_0 - 1/q^2) = \alpha_0$$
,

we have

$$H = \sum_{n=1}^{\infty} H_n$$
, $H_n = E[x \in H; \text{meas } \{A + Q(x)\} \ge \alpha_0 + 1/n]$.

Since at least one of the sets H_n is of the second category, this contradicts the definition of α_0 .

5. Next we prove

THEOREM 2. There exists a set B in I such that

- (i) for all x in E, the sequence $\{\xi_n(x, t)\}$ converges in measure on B;
- (ii) for every x in E, except perhaps for a set of the first category in E, the sequence $\{\xi_n(x,t)\}$ converges in measure on no set in I-B of positive measure.

First observe that for every $x \in E$, except perhaps for a set of the first category, the sequence $\{\xi_n(x, t)\}$ does not converge in measure on any set of positive measure contained in I-A (where A is the set defined in Theorem 1). Hence to prove Theorem 2 we may assume that I=A, or, which amounts to the same (see Theorem 1, (ii)) that the operations $F_n(x) = \xi_n(x, t)$ are equally continuous with respect to the whole set I.

From now on we shall follow the line of the proof of Theorem 1. Denote by β_0 the least upper bound of all numbers β with the property that there exists a set $H(\beta)$ of the second category in E such that for every $x \in H(\beta)$ the sequence $\{\xi_n(x,t)\}$ converges in measure on a set of measure $>\beta$. Let q be an arbitrary

positive integer, and let $H_{q,k}$ denote the set of all $x \in H(\beta_0 - 1/q^2)$ such that $\{\xi_n(x,t)\}\in C(1/q^2)$ on a set T_k (see §2) of measure $>\beta_0 - 1/q^2$. Clearly $H(\beta_0 - 1/q^2) = \sum_{k=1}^{\infty} H_{q,k}$, and thus there is a $k = k_q$ such that H_{q,k_q} is of the second category. Hence upon putting $H_q = H_{q,k_q}$ and $P_q = T_{k_q}$ we see that there exists a set H_q of the second category in E and a set P_q in I of measure $>\beta_0 - 1/q^2$ such that

(5.1)
$$\{\xi_n(x,t)\} \in C(1/q^2) \text{ on } P_q, x \in H_q.$$

Now as in the proof of Theorem 1 we shall show that for every x in E $\{\xi_n(x, t)\} \in C(6/q^2) \text{ on } P_a.$

Indeed, let $x_0 \in \overline{H}_q$ and η be an arbitrary positive number. The equal continuity of the operations $F_n(x)$ implies the existence of an $x_1 \in H_q$ sufficiently near to x_0 such that

(5.3) meas
$$E\left[t \epsilon I; |\xi_n(x_1-x_0,t)| > \frac{\eta}{6}\right] < \frac{1}{a^2}$$
 $(n=1, 2, \cdots).$

Again, in view of (5.1) there exists a positive integer n_0 such that, for $n \ge n_0$, $m \ge n_0$,

meas
$$E\left[t \epsilon P_q; \mid \xi_m(x_1, t) - \xi_n(x_1, t) \mid > \frac{\eta}{6}\right] < \frac{1}{a^2}$$

Thus, by (5.3),

(5.4) meas
$$E\left[t \epsilon P_q; \mid \xi_m(x_0, t) - \xi_n(x_0, t) \mid > \frac{\eta}{2}\right] < \frac{3}{q^2}, \quad m \geq n_0, n \geq n_0.$$

Let K_0 be an arbitrary sphere contained in \overline{H}_q and r_0 the radius of K_0 . Since (5.4) holds for all elements $x_0 \in K_0$, we have, by the linearity of the transformations $F_n(x)$,

$$\operatorname{meas} E[t \varepsilon P_q; \mid \xi_n(x,t) - \xi_m(x,t) \mid > \eta] < \frac{6}{q^2}, \quad m \geq n_0, \; n \geq n_0, \; \mid x \mid < r_0.$$

This means however that $\{\xi_n(x,t)\} \in C(6/q^2)$ on P_q whenever $|x| < r_0$ and consequently for every x in E.

Now let

$$B = \prod_{k=1}^{\infty} \sum_{q=k}^{\infty} P_q.$$

By Lemma 1 the sequence $\{\xi_n(x,t)\}$ converges in measure on B for every x. Hence, the set B satisfies condition (i). To establish condition (ii) suppose

that there is a set H of the second category such that for every $x \in H$ the sequence $\{\xi_n(x,t)\}$ converges in measure on a set $Q(x) \subset I - B$ of positive measure. Then, for every $x \in H$ the sequence would converge in measure on B+Q(x). But

meas
$$[B + Q(x)] > \text{meas } B \ge \lim_{q} \text{meas } P_q \ge \beta_0$$
,

which contradicts the definition of the number β_0 (cf. the proof of Theorem 1). Condition (ii) is thus established.

6. We now have

THEOREM 3. There exists a set C in I such that

- (i) for all x in E, $\sup_n |\xi_n(x, t)| < \infty$ almost everywhere in C;
- (ii) to every $\eta > 0$ there corresponds an r > 0 such that

meas
$$\underset{t}{E}[t \in C; \sup_{n} | \xi_{n}(x, t) | > \eta] < \eta, | x | < r;$$

(iii) for every x in E, except perhaps for a set of the first category in E, $\sup_{n} | \xi_{n}(x, t) | = \infty$

almost everywhere in I-C.

Let γ_0 be the least upper bound of all numbers γ such that the set $H(\gamma)$ of x for which

meas
$$E[\sup_{t} | \xi_{n}(x, t) | < \infty] > \gamma$$

is of the second category. Let q be an arbitrary positive integer and let $H_{q,p,k}$ denote the set of all $x \in H(\gamma_0 - 1/q^2)$ such that

$$\operatorname{meas} E_{t}[t \varepsilon T_{k}; \sup_{n} | \xi_{n}(x, t) | > p] < \frac{1}{q^{2}}, \quad \operatorname{meas} T_{k} > \gamma_{0} - \frac{1}{q^{2}}.$$

It is clear that $H(\gamma_0 - 1/q^2) = \sum_{p, k=1}^{\infty} H_{q, p, k}$ and so there exist integers $k = k_q$ and $p = p_q$ such that H_{q, p_q, k_q} is of the second category. Put $H_q = H_{q, p_q, k_q}$ and $P_q = T_{k_q}$. Thus for every $x \in H_q$

meas
$$E[t \in P_q; \sup_n | \xi_n(x, t) | > p_q] < \frac{1}{q^2}$$

while meas $P_q > \gamma_0 - 1/q^2$. Hence, by continuity of $\xi_n(x, t)$, for every $x \in \overline{H}_q$ and all s,

meas
$$E[t \in P_q; \sup_{n \leq s} | \xi_n(x, t) | > p_q] \leq \frac{1}{q^2}$$

and therefore, for all $x \in \overline{H}_q$,

(6.1)
$$\operatorname{meas} E[t \varepsilon P_q; \sup_n | \xi_n(x, t) | > p_q] \leq \frac{1}{q^2}.$$

Let K_0 be a sphere contained in \overline{H}_q . If r_0 is the radius of K_0 , (6.1) implies in view of the linearity of $\xi_n(x, t)$,

meas
$$E[t \epsilon P_q; \sup_{n} | \xi_n(x,t) | > 2p_q] \leq \frac{2}{q^2}$$

no matter what $x \in E$, provided $|x| < r_0$, and consequently, for any $\sigma > 0$,

(6.2)
$$\operatorname{meas} E[t \varepsilon P_q; \sup_n | \xi_n(x, t) | > \sigma] \leq \frac{2}{q^2}, | x | < \frac{r_0 \sigma}{2 p_q}.$$

Now, again by linearity of $\xi_n(x,t)$ it results from (6.2) that for every $x \in E$, $\sup_n |\xi_n(x,t)| < \infty$ for all $t \in P_q$, with the exception of at most a subset of measure $\leq 2/q^2$. Hence, upon putting $C = \prod_{k=1}^{\infty} \sum_{q=k}^{\infty} P_q$ we see at once that, for every $x \in E$, $\sup_n |\xi_n(x,t)| < \infty$ almost everywhere in C. Thus C satisfies condition (i) of the theorem.

Next, as in the proof of Lemma 1, let

$$Q_k = \sum_{q=k}^{\infty} P_q, \qquad Q_{k,s} = \sum_{q=k}^{s} P_q.$$

Let η be an arbitrary positive number, and let k_0 and s_0 be positive integers such that

(6.3)
$$\frac{2}{k_0-1} < \frac{\eta}{2}, \text{ meas } (Q_{k_0} - Q_{k_0,s_0}) < \frac{\eta}{2}.$$

In virtue of (6.2) there is an r>0 such that whenever |x| < r,

meas
$$E[t \in Q_{k_0,s_0}; \sup_{n} | \xi_n(x,t) | > \eta] \le \sum_{n=k_0}^{s_0} 2q^{-2} < \frac{\eta}{2}$$

and therefore, by (6.3),

meas $E[t \in C; \sup | \xi_n(x, t) | > \eta]$

$$\leq \text{meas } E[t \in Q_{k_0}; \sup |\xi_n(x, t)| > \eta] < \eta, \qquad |x| < r.$$

Thus condition (ii) for C is established. Finally condition (iii) follows at once from the definition of γ_0 , since

meas
$$C \ge \lim_{q \to \infty} \sup P_q \ge \gamma_0$$
.

7. Next we have

THEOREM 4. There exists a set D in I such that

- (i) for all x in E the sequence $\{\xi_n(x,t)\}$ converges almost everywhere on D;
- (ii) for every x in E except perhaps for a set of the first category, the sequence $\{\xi_n(x,t)\}$ diverges almost everywhere on I-D.

First observe that for every x, except perhaps for a set of the first category, the sequence $\{\xi_n(x,t)\}$ diverges almost everywhere on I-C, where C is the set defined in Theorem 3. Thus, without loss of generality, we may assume that I=C.

For a fixed $x \in E$ let $\Gamma(x)$ denote the subset of I on which $\{\xi_n(x, t)\}$ converges. Further let $H(\delta)$ denote the set of all $x \in E$ such that meas $\Gamma(x) > \delta$, $\delta > 0$, and let δ_0 be the upper bound of the numbers δ for which $H(\delta)$ is of the second category.

Now, let q be an arbitrary positive integer and $H_{q,k}$ the set of all $x \in H(\delta_0 - 1/q^2)$ such that

meas
$$T_k > \delta_0 - \frac{1}{q^2}$$
, meas $(T_k - T_k\Gamma(x)) < \frac{1}{q^2}$.

We thus have $H(\delta_0 - 1/q^2) = \sum_{k=1}^{\infty} H_{q,k}$, and so there exists a $k = k_q$ such that $H_{q,k}$ is of the second category. Put $H_q = H_{q,k_q}$ and $P_q = T_{k_q}$. Then

(7.1)
$$\operatorname{meas} (P_q - P_q \Gamma(x)) \leq \frac{1}{q^2}, \quad x \in H_q,$$

but we shall show that the latter inequality holds for every $x \in \overline{H}_q$. Indeed, let $x_0 \in \overline{H}_q$ and η be an arbitrary positive number. In virtue of Theorem 3 (condition (ii) with C = I) we can find an $x_1 \in H_q$ such that

meas
$$E[t \in I; \sup_{n} | \xi_n(x_0 - x_1, t) | > \eta] < \eta$$
.

Again, by (7.1) there is a positive integer $n_0 = n_0(\eta)$ such that

$$\operatorname{meas} E[t \varepsilon P_q; \sup_{n \geq n_0} | \xi_n(x_1, t) - \xi_{n_0}(x_1, t) | > \eta] \leq \frac{1}{q^2} + \eta,$$

whence

meas
$$E[t \in P_q; \sup_{n \ge n} | \xi_n(x_0, t) - \xi_{n_0}(x_0, t) | > 3\eta] \le \frac{1}{q^2} + 3\eta.$$

Since $\eta > 0$ is arbitrary this implies the convergence of the sequence $\{\xi_n(x,t)\}$ for every $x \in \overline{H}_q$ and for all $t \in P_q$, with the exception of at most a subset of

measure $\leq 1/q^2$. Since \overline{H}_q certainly contains a sphere the same holds for every $x \in E$ by the linearity of $\xi_n(x, t)$. Therefore, for each $x \in E$ the sequence converges almost everywhere on the set $D = \prod_{k=1}^{\infty} \sum_{q=k}^{\infty} P_q$. Thus the set D satisfies condition (i) of the theorem and condition (ii) follows at once since

meas
$$D \ge \lim_{q \to 0} \sup \operatorname{meas} P_q \ge \delta_0$$
.

- 8. In view of Theorems 1, 2, 3, and 4 to every sequence $\{\xi_n(x, t)\}$ of the type considered there are attached four sets A, B, C, and D. We obviously have $B \subset A$ and $D \subset C$ (except for sets of measure zero). However, on account of condition (ii) of Theorem 1 (or 3) we have B = A (or D = C) whenever E contains an everywhere dense set E_1 such that the sequence $\{\xi_n(x, t)\}$ converges in measure (or converges almost everywhere) in I for every x belonging* to E_1 . It follows that if E is a separable space then from the sequence $\{\xi_n(x, t)\}$ a subsequence $\{\xi_n'(x, t)\}$ may be extracted which converges almost everywhere in E for every E in fact it is sufficient to select the required subsequence so that it converges almost everywhere in E for every E belonging to an everywhere dense, denumerable set in E.
- 9. The theorems of the preceding sections do not hold \dagger in general, if the linear space E is replaced by the space R of characteristic functions. However, for the latter we have the following theorem:

THEOREM 5. (i) If for all x belonging to a set H of the second category in R the sequence $\{F_n(x) = \xi_n(x, t)\}$, $x \in R$, $t \in I$, converges in measure on I, then the operations $F_n(x)$ are equally continuous in I, i.e., for every $\eta > 0$ there exists an r > 0 such that

meas
$$E[t \in I; |\xi_n(x, t)| > \eta] \leq \eta$$
 $(n = 1, 2, \cdots),$

whenever |x| < r.

(ii) If for all x belonging to a set H of the second category in R, the sequence $\{\xi_n(x, t)\}$ converges almost everywhere on I, then for every $\eta > 0$ there exists an r > 0 such that

meas
$$E[t \in I; \sup_{n} | \xi_n(x, t) | > \eta] < \eta$$
,

whenever |x| < r.

We shall confine ourselves to the proof of statement (ii) of the theorem. The proof of statement (i) is the same as that of the lemma of S. F., p. 555.

^{*} Cf. Banach, Sur la convergence presque partout de fonctionnelles linéaires, Bulletin des Sciences Mathématiques, vol. 50 (1926), pp. 27-32, 36-43; Saks, Sur les fonctionnelles de M. Banach et leur application aux développements des fonctions, Fundamenta Mathematicae, vol. 10 (1927), pp. 186-196; Mazur and Orlicz, Über Folgen linearer Operationen, Studia Mathematica, vol. 4 (1933), pp. 152-157; esp. p. 157; Kaczmarz and Steinhaus, op. cit., pp. 177-178.

[†] See Gowurin, loc. cit.

170 S. SAKS

Let η be any positive number and k a positive integer; let H_k denote the set of all $x \in H$ such that

meas
$$E\left[t \in I; \sup_{n \geq k} \mid \xi_n(x,t) - \xi_k(x,t) \mid > \frac{\eta}{4}\right] \leq \frac{\eta}{4}$$

We have $H = \sum_{1}^{\infty} H_{k}$ and thus there exists a $k = k_{0}$ such that $H_{k_{0}}$ is of the second category. Hence

meas
$$E_t \left[t \epsilon I; \sup_{n \geq k_0} \left| \xi_n(x,t) - \xi_{k_0}(x,t) \right| > \frac{\eta}{4} \right] \leq \frac{\eta}{4}$$

for each $x \in H_{k_0}$, and therefore, by continuity (cf. the proof of Theorem 3), for all $x \in \overline{H}_{k_0}$. Let K_0 be a sphere which is contained in \overline{H}_{k_0} and let r_0 be its radius. For every element $x \in R$, $|x| < r_0$, there are two elements x_1 and x_2 in R such* that $x_1 \in K_0$, $x_2 \in K_0$ and $x_1 = x_2 + x$. It is readily seen that, no matter what $x \in K_0$, $|x| < r_0$,

(9.1)
$$\operatorname{meas} E_{t}\left[t \in I; \sup_{n \geq k_{0}} \left| \xi_{n}(x, t) - \xi_{k_{0}}(x, t) \right| > \frac{\eta}{2} \right] \leq \frac{\eta}{2}.$$

Let now $r < r_0$ be a positive number such that

meas
$$E\left[t \in I; \mid \xi_n(x,t) \mid > \frac{\eta}{2}\right] \leq \frac{\eta}{2k_0}$$
 $(n = 1, 2, \dots, k_0),$

whenever |x| < r. Then in view of (9.1), for every x, |x| < r,

meas
$$E_t[t \in I; \sup_{n} | \xi_n(x, t) | > \eta] \leq \eta$$
.

^{*} We put $x_1=x+x_0(1-x)$, $x_2=x_0(1-x)$ where x_0 is the center of the sphere K_0 .

THE UNIVERSITY OF WARSAW, WARSAW, POLAND